注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

小学数学教研天地

人生只有一次 成长不能重来

 
 
 

日志

 
 

小学数学思想方法的梳理(十一) ---反证法  

2012-10-26 08:41:08|  分类: 课程标准 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

小学数学思想方法的梳理(十一)
         课程教材研究所 王永春
十一、反证法

1.反证法的概念。

反证法是间接证明的一种基本方法,当我们需要证明一个判断为真时,先假设这个判断为假,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原判断应为真,这样的证明方法叫做反证法。反证法是演绎推理的一种,依据的是排中律,就是说两个互相矛盾的判断不可能同假,其中必有一真。

2.反证法的重要意义。

如前所述,课程标准提出了培养学生推理能力和逻辑思维能力的要求。反证法是从另一个角度利用推理进行证明的思想方法,无疑也是培养学生推理能力的重要的思想方法。因此,它的重要性也是不言而喻的。另外,反证法虽然有一定难度,但是它对于培养学生思维的灵活性和解决问题的能力也有益处。

3.反证法的具体应用。

反证法作为一种思想方法,不仅在数学中有很多应用,在日常生活和其他学科中也有应用。数学史上有比较经典的利用反证法证明的问题,如证明是无理数,证明素数有无限多个等。在小学数学中,反证法的应用不多,在抽屉原理等问题中有一些应用。

4.反证法的教学。

反证法在小学数学教学中应用较少,教师在教学时应注意以下几点。

第一,掌握它的基本原理和步骤是必要的。反证法采用的论证方式是演绎推理中的假言推理形式,依据的是排中律。它的证明步骤大致如下:(1)假设待证的结论为假、反论题为真;(2)从反论题出发,经过正确的逻辑推理,得出与已知条件或者定义、定理、公理、事实等矛盾;(3)根据排中律得出原结论成立。

第二,对反证法涉及的一些概念和词语应正确理解。在描述一对概念间的关系时,应注意怎样描述才是矛盾的。如是与不是、等于与不等于、大于与不大于、至少有一个与一个也没有等是相互矛盾的关系。有时候要注意容易出现错误的地方,如大于5与小于5、正数与负数等不是相互矛盾的关系,是一种对立关系。也就是说,两个矛盾的种概念外延之和等于属概念的外延,两个对立的概念的外延之和小于属概念的外延。大于与小于中间有等于、正数和负数中间有0。大于5与不大于(小于等于)5、正数与非正数(0和负数)是矛盾关系。

第三,对于学生来说,只需初步了解其方法。作为教师而言,要掌握反证法的基本原理、步骤和推理方法,以便在教学中把握反证法的科学性。学生通过简单的案例和运用反证法通俗易懂的推理过程,能够了解反证法的基本思想和数学方法的丰富性,培养思维的灵活性。

案例1: 把43人分成7个小组,总有一个小组至少有7人。请说明理由。

分析:假设每个小组最多有6人,那么7个小组最多有42人,与已知条件有43人矛盾,假设不成立,所以总有一个小组至少有7人。

案例2:把11个参加活动的名额分配给6个班,每班至少分配1人。请说明:不管怎样分,至少有3个班的名额相等。

分析:假设名额相等的班级最多有2个,那么需要的名额总数至少应为:(1+2+3)×2=12(个),与已知条件有11个名额矛盾。所以至少有3个班的名额相等。

案例3:在直角三角形ABC中,∠C是直角,请说明:∠A一定是锐角。

分析:假设∠A不是锐角,首先三角形的任何一个内角不可能等于0度,那么有∠A≥90°,又因为∠C =90°,∠B>0°,所以∠A+∠B+∠C>180°,这与三角形的内角和等于180°矛盾。所以∠A一定是锐角。

  评论这张
 
阅读(211)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017