注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

小学数学教研天地

人生只有一次 成长不能重来

 
 
 

日志

 
 

小学数学思想方法的梳理(九) ---概率思想  

2012-10-26 08:35:50|  分类: 课程标准 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
小学数学思想方法的梳理(九)
课程教材研究所 王永春

九、概率思想

1. 概率思想的概念。

生活中的事件可以分成两类:一类是确定事件,在一定条件下一定发生的和一定不会发生的,这些事件都是确定事件;如每天日出日落、四季轮回是一定发生的,而掷两枚骰子朝上的两个数字的和是13是不可能发生的。另一类是随机事件,就是在一定条件下可能发生也可能不发生的事件,如一个产妇生男婴还是生女婴、某种子的发芽率、某产品的合格率等事件,都是随机事件。这些随机事件表面上看杂乱无章,但是大量地重复观察这些事件时,这些随机事件会呈现规律性,这种规律叫统计规律,概率论是研究随机现象的统计规律性的一门数学学科,统计与概率有着密切的联系。

(1)事件的分类。

事件可以分为确定事件和随机事件,其中确定事件又可以分为必然事件和不可能事件。在一定条件下一定发生的是必然事件,一定不会发生的是不可能事件。

(2)频率与概率的区别和联系。

随机事件发生的可能性的大小是概率论研究的主要内容,通过试验来观察随机事件发生的可能性的大小是常用的方法。在相同的条件下,重复进行n次试验,某一事件A出现的次数m就是频数,m/n就是事件A出现的频率。如果试验的次数不断增加,事件A发生的频率稳定在某个常数上,就把这个常数记作P(A),称为事件A的概率。

事件的概率是确定的、不变的常数,是理论上的精确值;而频率是某次具体试验的结果,是不确定的、变化的数,尽管这种变化可能非常的小。

这里的概率是用频率来界定的,在等可能性随机试验中,虽然频率总是在很小的范围内变化,但我们可以认为频率和概率的相关性非常的强。也就是说,在一次试验中,事件A出现的频率越大、事件A的概率就越大;事件A出现的频率越小、事件A的概率就越小。反之亦然。

(3)两种概率模型。

古典概模:试验中所有可能出现的基本事件是有限的,每个基本事件出现的可能性相等。如比较经典的投硬币和掷骰子试验,都属于这种概率模型。

几何概型:试验中每个基本事件发生的概率只与构成该事件区域的长度(面积、体积)成比例。如比较常见的转盘游戏,就是几何概率模型。

2. 概率思想的重要意义。

生活中的很多现象都是随机现象,如气候变化、物价变化、体育比赛、汽车流量、彩票中奖等等。这些随机事件,如果能够比较准确地预测它发生的可能性的大小,就会为我们的工作和生活带来很多方便、解决很多问题。随着科技的发展,气象部门已经能够比较准确地预报天气变化,对气温、降水量、风力、风向等的变化作出比较准确的预测,帮助人们提早做出预防,从而减少灾害的发生。这些现象都离不开对数据的分析以及对事件发生可能性大小的定量刻画,从而做出合理的预测和决策,这正是统计与概率研究的主要内容。因而,统计与概率的思想方法既是进一步学习的基础,也是人们在生活和工作中必须掌握的。

3. 概率思想的具体应用。

概率思想主要应用于统计与概率领域。一是小学数学第一、第二学段都安排了可能性的内容,如会求简单的等可能性随机事件发生的可能性,根据等可能性事件设计公平的游戏规则。二是统计推断中很多情况是根据对随机事件的相关数据进行分析后,再对随机事件发生的可能性大小进行预测和决策。如2010年南非世界杯决赛西班牙对荷兰,有人预测西班牙夺冠,理由是西班牙是近年欧洲冠军、实力雄厚;还有人预测荷兰卫冕,理由是荷兰是无冕之王、两次获得世界杯亚军。西班牙和荷兰两队历史上一共交手9次,其中荷兰4胜1平4负,实力不分上下。所以两队夺冠的可能性各占一半。

4.概率思想的教学。

2001年课程改革是首次正式把概率的内容纳入小学数学,对这部分内容的科学性和难度的准确把握是个挑战。这部分内容的教学应注意以下几点。

第一, 随机事件的发生是有条件的,是在一定条件下,事件发生的可能性有大小;条件变了,事件发生的可能性大小也可能会变化。如种子的发芽率与很多因素有关,如种子的质量、保存期限、温度、水分、土壤、阳光、空气等等。在各种条件都合适的情况下,发芽率可能高达90%;条件不合适发芽率可能降到50%甚至不发芽。

第二, 避免把频率与概率混淆。如最经典的就是用掷硬币试验去验证概率。从概率的统计定义而言,做抛硬币试验是可以的,可以使学生参与实践活动、经历知识的形成过程、提高学习的兴趣。关键是广大教师心中要明白:试验次数少的时候频率与概率的误差可能会比较大,但是试验次数多,也不能每次都保证频率与概率相差很小,或者说试验次数足够大的两次试验,也不能保证试验次数多的比试验次数少的误差小。这是随机事件本身的特点决定的,教师要通过通俗的语言使学生清楚这一点。这样在抛硬币时出现什么情况都是正常的,在学生操作的基础上,有条件的可通过计算机模拟试验,还要呈现数学家们做的试验结果,使学生理解概率的统计定义。

第三,创设联系学生生活的情境,要注意每个基本事件是否具有等可能性。如下面的题目就不合适:全班50个学生,选一人代表全班参加科普知识竞赛,张三被选中的可能性是多少?事实上参加竞赛是有一定条件的,如需要学习好、知识面宽等等,每个学生被选中的可能性是不相等的。

第四, 概率是理论上的精确值,但是随机事件在具体一次试验中可能出现意外,即频率与概率有一定偏差。随机中有精确,精确中有随机,这是对待概率的一种科学态度。

案例1:连续两次抛掷一枚硬币,如果第一次正面朝上,那么第二次一定是反面朝上吗?

分析:从概率角度分析,抛一枚硬币正面和反面朝上的可能性相等,都是二分之一;并不会因为第一次正面朝上而影响第二次正面和反面朝上的可能性相等的理论事实。因此,第二次正面和反面朝上的可能性仍然相等。

案例2:天气预报预测明天降水概率是90%,明天一定下雨吗?

分析:明天是否降水是一个随机事件,尽管降水概率高达90%,说明降水的可能性很大,但可能性大的事件也可能不发生,所以不能说明天一定下雨。

案例3:六(2)班同学血型情况如图。

小学数学思想方法的梳理(九) ---概率思想 - 一片天 - 小学数学教研天地

(1)从图中你能得到哪些信息?

(2)该班有50人,各种血型各有多少人?

分析:(1)从扇形图中可以初步得到如下信息:在六(2)班的同学中有四种血型,这四种血型O型的人最多、占40%,A型和B型的人数分别排第二、第三,AB型的人最少,只占8%。

(2)50人中O型、A型、B型和AB型的人数分别有:20、14、12、4人。

案例3是人教版教材上的习题。实际上这道题还可以进一步扩展,可以把全班50人的数据作为一次抽样调查的数据,从而估计其他人群(如六年级、全校、本地区等等)血型的分布情况,这是学习统计与概率最重要的意义所在。当然,本题的第一问也包含了一些推断的信息,但由于问题比较笼统,学生未必能有更好的发现。因此,本题如果再出一个如下的小题,效果会更好。

(3)六年级有200人,你能估计各种血型的人数吗? 

  评论这张
 
阅读(170)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017