注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

小学数学教研天地

人生只有一次 成长不能重来

 
 
 

日志

 
 

第一部分——读懂课标(“基本活动经验”和“基本思想方法”)  

2012-05-06 09:04:11|  分类: 课程标准 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
第一部分——读懂课标

一、课程标准实验修订稿介绍:突出的变化:

1、由基础知识、基本技能的“双基”变“四基”,基础知识、基本技能、基本活动经验、基本思想方法的“四基”。

2、由分析问题和解决解决问题的“两能”变为发现问题、提出问题、发现问题、解决问题的“四能”

二、重点交流一下“基本活动经验”和“基本思想方法

基本活动经验

1.对“数学基本活动经验”的理解

基本活动经验首先是“数学“的。所从事的活动要有明确的数学目标,没有数学目标的活动不是“数学活动”。小学数学是研究最基本的数量关系、图形关系、随机关系(主要是统计关系),也就是说与数量关系、图形关系、随机关系无关的活动,不是数学活动。其次是“经验”的。经验是一种感性认识,包含双重意义,一是经验事物,二是经验的过程。数学经验是数学的感性认识,是在数学活动中积累的。再次是“活动”的。前苏联著名数学教育家斯托利亚尔的《数学教育学》认为:“数学教学是数学活动的教学,思维活动的教学”,那么包括抽象思维、数学证明、数学解题在内的整个数学教学活动都是“数学活动”,这样就过于泛化。我们所说的“数学活动经验”所指的“活动”其特定含义主要是通过对数学材料的具体操作和形象探究活动。至于“基本”, 《数学》把数学知识,数学技能,数学思想,数学活动都冠以“基本”,称作“四基”。

2、数学基本活动经验的特征

数学基本活动经验的特征有四个:

个体性:数学基本活动经验是属于个人的,它有明显的学生个性特征。数学基本活动经验是属于学生自己的。

实践性:数学基本活动经验是学生在学习过程中获得的,离开实践活动就不能形成有意义的数学活动经验。

多样性:学习群体针对同一数学对象,尽管学习环境等外部条件相同,但每一个学生仍然会有不同的活动经验。所以。对于学生群体来说,数学活动经验具有多样性。

发展性:数学基本活动经验是反映学生在特定的学习环境中或某一学习阶段对学习对象的一种经验性的认识,是感性的、非严格性的,随着学习内容的深入,获得的活动经验会不断变化、不断发展。而且个体的活动经验在群体的“经验交流”中会相互补充。相互充实,丰富、发展个体活动经验。

3、数学基本活动经验的基本类型

小学数学的活动是多种多样的,但最根本是帮助学生能为抽象的数学找到具体形象的原型,增进数学理解。根据从事数学活动的不同模式,数学基本活动的主要类型有:

1)直接的数学活动经验

   小学数学知识相当一部分直接来源于日常生活现实,因此,应设计源于实际生活的数学活动,体验其中的“数学味”获得相应的数学活动经验。比如说:购物活动、测量活动等。

2)间接的数学活动经验

  创设情境,构建数学模型所获得的经验,这类活动的特征是模拟,在假想的模型中进行操作和探索。比如:做一张数位表,取9颗围棋子,让学生在数位表中的个位、十位中摆数。分别用345……9,这些活动在现实生活中是没有的,而大量存在于数学活动之中,是数学学习的有机组成部分。重视这些活动设计,就丰富了数学基本活动经验。

3)专门设计的数学活动经验。

   由纯粹的数学活动获得经验。这类活动是专门味数学学习而设计的,是具体的形象的数学操作。比如:圆锥体积的教学,圆的面积推导,圆柱体积的推导等

4、数学基本活动经验在《数学》教材中的体现

积累数学活动经验,使之成为学生形成数学现实,构成数学认识的现实基础,是数学教学实施素质教育的重要课题。《数学》教材注意了以下几个方面。

1)教材编排在“做数学”中体验数学,感悟数学;

2)教材已经设计好了的教学活动;

3)教材体现数学基本活动经验重在积累与提升。

应该看到仅仅停留在在感性层面的活动经验是粗浅的,教学时要采取恰当的措施对数学知识、解题思路从感性认识上升到理性认识,要处理好活动过程与活动结果的关系,问题化、情境化与知识系统化的关系。

5、小学数学教学中应形成的基本活动经验有那些?

小学数学教学中应形成的基本活动经验有操作、观察、实验、猜测、度量、验证、推理、交流等数学活动经验。

基本思想方法

一、         什么是数学思想和方法

数学思想是数学研究活动中解决数学问题的根本想法,是对数学内在规律的认识,也是在数学知识和方法做进一步认识和概括的基础上形成的一般性观点;

数学方法是在数学研究活动中解决数学问题的具体途径手段和方式的总和,是解决数学问题的策略和程序,是数学思想的具体体现。

学生学习数学的最终目的,是要运用所学到的数学知识去解决一些实际问题,要解决问题就要有一定的方式、方法、途径和手段,这就是策略。这种策略无不受到数学思想的影响和支配。而学生一旦掌握了解决问题的方式方法,又可以促进数学思想的进一步形成和完善。可见,两者是既有联系又有区别的辩证统一体,数学思想指导着数学方法,数学方法是数学思想的具体表现,二者是相互依存、相互促进的。可以说,数学思想和方法是数学的灵魂,是创造能力的源泉;良好的数学思想和方法,可使学生终生受益。

二、在小学数学教学中,有哪些数学思想和方法呢?

两句打油诗概括:

对函极统假比模。类归各二两化合。总计包含15种数学思想方法。

解释:第一句:对是对应思想;函是函数思想;极是极限思想;统是统计思想;假是假设思想;比是比较思想;模是模型思想。

      第二句:“类归各二”是“类”是指类比和分类思想两个;“归”是指化归和归纳两个思想:“两化合“化”和“合”各两个,化是指符号化和转化思想两个;合是指数形结合和集合两个思想。

1、数形结合的思想方法

    数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题和解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

   例如,我们常用画线段图的方法来解决问题,这是用图形来代替数量关系的一种方法;我们还可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。再如:1-1/2-1/4-1/8-1/16=

2、集合的思想方法

    把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。如用圆圈图(韦恩图)向学生直观的渗透集合概念,让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

3、对应的思想方法

    对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。如新世纪版一年级上册教材中,分别将小兔和小鹿、小猴和小熊、小兔和小鸟一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

4、函数的思想方法

    恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。函数思想在新世纪版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

5、极限的思想方法

    极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。新世纪版教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

6、化归的思想方法

    化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想,在教学时也经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

7、归纳的思想方法

    在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度,这就运用归纳的思想方法。

8、符号化的思想方法

    数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。

    教材从一年级就开始用“□”或“()”代替变量 x ,让学生在其中填数。例如: 1 + 2 = 6 + =8 7 = ++++++□;再如:学校原有7个皮球,又买来4个,学校现在有多少个皮球?要学生填出□ = (个)。符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。

9、统计的思想方法

    在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法。

10、转化思想方法

    转化思想是数学思想的重要组成部分。它是从未知领域发展,通过数学元素之间因有联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在小学数学中,主要表现为数学的某一形式向另一形式转变,化未知为已知、化繁为简、化曲为直等。小学生掌握转化思想,可以有效地提高思维的灵活性,提高自己获取知识和解决实际问题的能力。

11、假设的思想方法、

    假设思想是一种常用的推测性的数学思考方法.利用这种思想可以解一些填空题、判断题和应用题.有些题目数量关系比较隐蔽,难以建立数量之间的联系,或数量关系抽象,无从下手.可先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使得要解决的问题更形象、具体,从而丰富解题思路。

12、比较的思想方法、

    人类对一切事物的认识,都是建筑在比较的基础上,或同中辨异,或异中求同。俄国教育家乌申斯基说过:“比较是一切理解和一切思维的基础。”小学生学习数学知识,也同样需要通过对数学材料的比较,理解新知的本质意义,掌握知识间的联系和区别。 在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题的途径。

13、分类的思想方法、

    分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按因数的个数分素数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理的分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构

14、类比的思想方法

    数学上的类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想,它能够解决一些表面上看似复杂困难的问题。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟得自然和简洁,从而可以激发起学生的创造力,正如数学家波利亚所说:“我们应该讨论一般化和特殊化和类比的这些过程本身,它们是获得发现的伟大源泉。” 如由加法交换律abba的学习迁移到乘法分配律a×b=b×a的学习 又如长方形的面积公式为长×宽=a×b,通过类比,三角形的面积公式也可以理解为长(底)×宽(高)÷2a×bh)÷2。类似的,圆柱体体积公式为底面积×高,那么锥体的体积可以理解为底面积×高÷3

15、模型思想

    是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。 培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。数学模型方法不仅是处理纯数学问题的一种经典方法,而且也是处理自然科学、社会科学、工程技术和社会生产中各种实际问题的一般数学方法。用数学方法解决某些实际问题,通常先把实际问题抽象成数学模型。所谓数学模型,是指从整体上描述现实原型的特性、关系及规律的一种数学方程式。按广义的解释,从一切数学概念、数学理论体系、各种数学公式、各种数学方程以及由公式系列构成的算法系统都称之为模型 。但按狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构,才叫数学模型。比如根据具体问题中的数量关系,建立数学模型,列出方程进行求解。

小学数学除渗透运用了上述数学思想方法外,还有很多的思想方法。在教学中渗透和运用这些教学思想方法,增强了学习的趣味性,调动了学习的主动性,突出了思维的灵活性,渗透了数学的思想方法,发展学生的数学智能。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。

  评论这张
 
阅读(223)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017