注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

小学数学教研天地

人生只有一次 成长不能重来

 
 
 

日志

 
 

《小学数学新课程标准》(修改稿)---关于学习内容的设计思路  

2011-09-08 14:54:25|  分类: 课程标准 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

                                                              设计思路---关于学习内容之一:数与代数
 在各个教学段中,《标准》安排了四个方面的内容:“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”。
 数与代数
“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。
在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力,树立模型思想。
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。建立“数感”有助于学生理解现实生活中数的意义,理解或表述具体情景中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立“符号意识”有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
运算是“数与代数”的重要内容,运算是基于法则进行的,通常运算满足一定的运算律。学习这些内容有助于理解运算律,培养运算能力。
模型也是“数与代数”的重要内容,方程、方程组、不等式、函数等都是基本的数学模型。从现实生活或者具体情境中抽象出数学问题,是建立模型的出发点;用符号表示数量关系和变化规律,是建立模型的过程;求出模型的结果并讨论结果的意义,是求解模型的过程。这些内容有助于培养学生的学习兴趣和应用意识,体会数学建模的过程,树立模型思想

                                                设计思路---关于学习内容之二:图形与几何
图形与几何
“图形与几何”主要内容有:空间和平面的基本徒刑,图形的性质和分类;平面图形基本性质的证明;图形的平移、旋转、轴对称、相似和投影;运用坐标描述图形的位置和图形的运动。
在“图形与几何”的学习中,应帮助学生建立空间观念。

空间观念是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;能够想象出空间物体的方位和相互之间的位置关系;根据语言描述或通过想象画出图形等。
直观与推理是“图形与几何”学习中的两个重要方面。

几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。在许多情况下,借助几何直观可以把复杂的数学问题变得简明、形象。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,并且贯穿在整个数学学习中。
推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式,因此,与直观一样,推理也贯穿在整个数学学习中。推力一般包括合情推理和演绎推理。

合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果,是由特殊到一般的过程。

演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则(包括逻辑和运算)验证结论,是由一般到特殊的过程。在解决问题的过程中,合情推力有助于探索解决问题的思路、发现结论;演绎推理用于验证结论的正确性。
                                                    设计思路---关于学习内容之三:统计与概率
  统计与概率
“统计与概率”主要内容有:收集、整理和描述数据,包括简单抽样、记录调查数据、描绘统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的判断。简单随机事件及其发生的概率。
      在“统计与概率”中,帮助学生逐渐建立起数据分析的观念是重要的。数据分析包括:了解在现实生活中有许多问题应当先做调查研究、收集数据,通过分析作出判断,体会数据中是蕴涵着信息的;体验数据是随机的和有规律的,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法。在概率的学习中,所涉及的随机现象都基于简单事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。“统计与概率”的内容与现实生活联系密切,必须结合具体案例组织教学。
                                                 设计思路---关于学习内容之四:综合与实践
 综合与实践
“综合与实践”是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。针对问题情景,学生借助所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间及其他学科的联系,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。这种类型的课程对于培养学生的抽象能力和逻辑思维能力、对于培养学生的创新意识和应用能力是有益处的,还有利于培养学生的合作精神。合理地设计课程内容以及教学方法是达到教学目标的关键,既要考虑学生的直接经验、能够启发学生思考,也要考虑问题的数学实质、培养学生的数学素养。这种类型的课程对教师是一种挑战,教师应努力把握住问题的本质,能够引导学生思考,同时,教师又应努力帮助学生整理清楚自己的思路,指导学生以不同的形式展示自己的成果或报告自己的工作。
      这种类型的课程应当贯彻“少而精”的原则,保证每学期至少一次。它可以在课堂上完成,也可以将课内外相结合。

  评论这张
 
阅读(393)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017